[5] | 1 | /* |
---|
| 2 | * approx_esc_2d.cpp |
---|
| 3 | * |
---|
| 4 | * Created on: Jul 31, 2012 |
---|
| 5 | * Author: Berk Calli |
---|
| 6 | * Organization: Delft Biorobotics Lab., Delft University of Technology |
---|
| 7 | * Contact info: b.calli@tudelft.nl, web: www.dbl.tudelft.nl |
---|
| 8 | * |
---|
| 9 | * Class for one dimensional approximation based extremum seeking control |
---|
| 10 | * |
---|
| 11 | * * References: |
---|
| 12 | * - C. Zhang and R. Ordonez, âRobust and adaptive design of numerical optimization-based extremum seeking control,â Automatica, vol. 45, pp. 634â646, 2009. |
---|
| 13 | * - B. Calli, W. Caarls, P. Jonker and M. Wisse, "Comparison of Extremum Seeking Control Algorithms for Robotic Applications," IROS 2012. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | #include "esc_approx/approx_esc_2d.h" |
---|
| 17 | |
---|
| 18 | ApproxESC2D::ApproxESC2D(){ |
---|
| 19 | data_size_ = 0; |
---|
| 20 | k_grad_ = 0; |
---|
| 21 | init_vel_ = 0; |
---|
| 22 | sampling_ = 0; |
---|
| 23 | ptr_ = 0; |
---|
| 24 | initialized_ = false; |
---|
| 25 | } |
---|
| 26 | |
---|
| 27 | ApproxESC2D::ApproxESC2D(int data_size, double k_grad, double init_vel, int sampling){ |
---|
| 28 | init(data_size,k_grad,init_vel,sampling); |
---|
| 29 | } |
---|
| 30 | |
---|
| 31 | void ApproxESC2D::init(int data_size, double k_grad, double init_vel, int sampling){ |
---|
| 32 | data_size_ = data_size; |
---|
| 33 | k_grad_ = k_grad; |
---|
| 34 | init_vel_ = init_vel; |
---|
| 35 | sample_ = 0; |
---|
| 36 | sampling_ = sampling; |
---|
| 37 | ptr_ = 0; |
---|
| 38 | states_ = Eigen::MatrixXf::Zero(2,data_size); |
---|
| 39 | obj_vals_ = Eigen::VectorXf::Zero(data_size_); |
---|
| 40 | state_curr_.resize(2); |
---|
| 41 | vel_ref_.resize(2); |
---|
| 42 | initialized_ = true; |
---|
| 43 | } |
---|
| 44 | |
---|
| 45 | std::vector<double> ApproxESC2D::step(std::vector<double> state, double obj_val){ |
---|
| 46 | if(initialized_){ |
---|
| 47 | if(sample_ % sampling_ == 0){ |
---|
| 48 | |
---|
| 49 | states_(0,ptr_) = state[0]; |
---|
| 50 | states_(1,ptr_) = state[1]; |
---|
| 51 | obj_vals_(ptr_) = obj_val; |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | if (sample_<sampling_*data_size_ ){ |
---|
| 56 | vel_ref_(0) = init_vel_*2.0/3.0; |
---|
| 57 | vel_ref_(1) = init_vel_; |
---|
| 58 | }/* |
---|
| 59 | else if(grad_val[0]>2 || grad_val[0]<-2){ |
---|
| 60 | vel_ref_(0) = init_vel_; |
---|
| 61 | vel_ref_(1) = init_vel_; |
---|
| 62 | }*/ |
---|
| 63 | else{ |
---|
| 64 | Eigen::MatrixXf V(data_size_,4); |
---|
| 65 | V = Eigen::MatrixXf::Zero(data_size_, 4); |
---|
| 66 | |
---|
| 67 | for (int i = 0; i<data_size_; i++){ |
---|
| 68 | V(i,0) = states_(0,i)*states_(1,i); |
---|
| 69 | V(i,1) = states_(0,i); |
---|
| 70 | V(i,2) = states_(1,i); |
---|
| 71 | V(i,3) = 1; |
---|
| 72 | } |
---|
| 73 | |
---|
| 74 | Eigen::VectorXf coef = Eigen::VectorXf::Zero(data_size_); |
---|
| 75 | |
---|
| 76 | printf("V = \n"); |
---|
| 77 | for (int i = 0; i<data_size_; i++) |
---|
| 78 | printf(" %f %f %f %f %f \n",V(i,0),V(i,1),V(i,2),V(i,3),obj_vals_(i)); |
---|
| 79 | |
---|
| 80 | //coef = V.jacobiSvd(Eigen::ComputeFullU | Eigen::ComputeFullV).solve(obj_vals_); |
---|
| 81 | coef = V.colPivHouseholderQr().solve(obj_vals_); |
---|
| 82 | state_curr_(0) = states_(0,ptr_); |
---|
| 83 | state_curr_(1) = states_(1,ptr_); |
---|
| 84 | Eigen::VectorXf grad_val = Eigen::VectorXf::Zero(2); |
---|
| 85 | |
---|
| 86 | grad_val(0) = coef(0)*state_curr_(1)+coef(1); |
---|
| 87 | grad_val(1) = coef(0)*state_curr_(0)+coef(2); |
---|
| 88 | |
---|
| 89 | printf("grad_val[0] = %f \n",grad_val(0)); |
---|
| 90 | printf("coef[0] = %f coef[1] = %f coef[2] = %f\n",coef(0),coef(1),coef(2)); |
---|
| 91 | printf("in \n"); |
---|
| 92 | vel_ref_ = -k_grad_*grad_val; |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | printf("\n"); |
---|
| 96 | |
---|
| 97 | sample_ = sample_+1; |
---|
| 98 | ptr_ = ptr_+1; |
---|
| 99 | if(ptr_>=data_size_) |
---|
| 100 | ptr_ = 0; |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | std::vector<double> out; |
---|
| 104 | out.push_back(vel_ref_(0)); |
---|
| 105 | out.push_back(vel_ref_(1)); |
---|
| 106 | return out; |
---|
| 107 | } |
---|
| 108 | else{ |
---|
| 109 | sample_ = sample_+1; |
---|
| 110 | std::vector<double> out; |
---|
| 111 | out.push_back(vel_ref_(0)); |
---|
| 112 | out.push_back(vel_ref_(1)); |
---|
| 113 | return out; |
---|
| 114 | } |
---|
| 115 | } |
---|
| 116 | else{ |
---|
| 117 | fprintf(stderr,"The approximation based ESC (1D) is not initialized... It will not be executed. \n"); |
---|
| 118 | return std::vector<double>(); |
---|
| 119 | } |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | ESC::inputType ApproxESC2D::getInputType(){ |
---|
| 123 | return ESC::inputStateValue; |
---|
| 124 | } |
---|
| 125 | ESC::outputType ApproxESC2D::getOutputType(){ |
---|
| 126 | return ESC::outputVelocity; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | std::vector<double> ApproxESC2D::monitor(){ |
---|
| 130 | return std::vector<double> (); |
---|
| 131 | } |
---|
| 132 | std::vector<std::string> ApproxESC2D::monitorNames(){ |
---|
| 133 | return std::vector<std::string>(); |
---|
| 134 | } |
---|