[10] | 1 | //=================================================================================== |
---|
| 2 | // Name : saliencyDetectionRudinac.cpp |
---|
| 3 | // Author : Joris van de Weem, joris.vdweem@gmail.com |
---|
| 4 | // Version : 1.1 |
---|
| 5 | // Copyright : Copyright (c) 2011 LGPL |
---|
| 6 | // Description : C++ implementation of "Maja Rudinac, Pieter P. Jonker. |
---|
| 7 | // "Saliency Detection and Object Localization in Indoor Environments". |
---|
| 8 | // ICPR'2010. pp.404~407 |
---|
| 9 | //=================================================================================== |
---|
| 10 | // v1.1: Ported to Robot Operating System (ROS) |
---|
| 11 | |
---|
| 12 | #include <saliency_detection/saliencyDetectionRudinac.h> |
---|
| 13 | |
---|
| 14 | void saliencyMapRudinac::imageCB(const sensor_msgs::ImageConstPtr& msg_ptr) |
---|
| 15 | { |
---|
| 16 | cv_bridge::CvImagePtr cv_ptr; |
---|
| 17 | sensor_msgs::Image salmap_; |
---|
| 18 | geometry_msgs::Point salientpoint_; |
---|
| 19 | |
---|
| 20 | Mat image_, saliencymap_; |
---|
| 21 | Point pt_salient; |
---|
| 22 | double maxVal; |
---|
| 23 | |
---|
| 24 | try |
---|
| 25 | { |
---|
| 26 | cv_ptr = cv_bridge::toCvCopy(msg_ptr, enc::BGR8); |
---|
| 27 | } |
---|
| 28 | catch (cv_bridge::Exception& e) |
---|
| 29 | { |
---|
| 30 | ROS_ERROR("cv_bridge exception: %s", e.what()); |
---|
| 31 | } |
---|
| 32 | cv_ptr->image.copyTo(image_); |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | saliencymap_.create(image_.size(),CV_8UC1); |
---|
| 36 | saliencyMapRudinac::calculateSaliencyMap(&image_, &saliencymap_); |
---|
| 37 | |
---|
| 38 | //-- Return most salient point --// |
---|
| 39 | cv::minMaxLoc(saliencymap_,NULL,&maxVal,NULL,&pt_salient); |
---|
| 40 | salientpoint_.x = pt_salient.x; |
---|
| 41 | salientpoint_.y = pt_salient.y; |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | // CONVERT FROM CV::MAT TO ROSIMAGE FOR PUBLISHING |
---|
| 45 | saliencymap_.convertTo(saliencymap_, CV_8UC1,255); |
---|
| 46 | fillImage(salmap_, "mono8",saliencymap_.rows, saliencymap_.cols, saliencymap_.step, const_cast<uint8_t*>(saliencymap_.data)); |
---|
| 47 | |
---|
| 48 | saliencymap_pub_.publish(salmap_); |
---|
| 49 | point_pub_.publish(salientpoint_); |
---|
| 50 | |
---|
| 51 | return; |
---|
| 52 | } |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | void saliencyMapRudinac::calculateSaliencyMap(const Mat* src, Mat* dst) |
---|
| 56 | { |
---|
| 57 | Size imageSize(128,128); |
---|
| 58 | Mat srcDown(imageSize,CV_64F); |
---|
| 59 | Mat magnitudeI(imageSize,CV_64F); |
---|
| 60 | Mat magnitudeRG(imageSize,CV_64F); |
---|
| 61 | Mat magnitudeBY(imageSize,CV_64F); |
---|
| 62 | Mat magnitude(imageSize,CV_64F); |
---|
| 63 | |
---|
| 64 | resize(*src, srcDown, imageSize, 0, 0, INTER_LINEAR); |
---|
| 65 | |
---|
| 66 | createChannels(&srcDown); |
---|
| 67 | createSaliencyMap(I,&magnitudeI); |
---|
| 68 | createSaliencyMap(RG,&magnitudeRG); |
---|
| 69 | createSaliencyMap(BY,&magnitudeBY); |
---|
| 70 | |
---|
| 71 | magnitude= (magnitudeI + magnitudeRG + magnitudeBY); |
---|
| 72 | GaussianBlur(magnitude, magnitude, Size(5,5), 0, 0, BORDER_DEFAULT); |
---|
| 73 | |
---|
| 74 | //-- Scale to domain [0,1] --// |
---|
| 75 | double minVal,maxVal; |
---|
| 76 | minMaxLoc(magnitude, &minVal, &maxVal); |
---|
| 77 | magnitude = magnitude / maxVal; |
---|
| 78 | |
---|
| 79 | resize(magnitude, *dst, dst->size(), 0, 0, INTER_LINEAR); |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | void saliencyMapRudinac::createChannels(const Mat* src) |
---|
| 84 | { |
---|
| 85 | |
---|
| 86 | b.create(src->size(),CV_32F); |
---|
| 87 | g.create(src->size(),CV_32F); |
---|
| 88 | r.create(src->size(),CV_32F); |
---|
| 89 | I.create(src->size(),CV_32F); |
---|
| 90 | vector<Mat> planes; |
---|
| 91 | split(*src, planes); |
---|
| 92 | Mat rgmax(src->size(),CV_32F); |
---|
| 93 | Mat rgbmax(src->size(),CV_32F); |
---|
| 94 | Mat mask(src->size(),CV_32F); |
---|
| 95 | |
---|
| 96 | for(int j=0; j<r.rows;j++) |
---|
| 97 | for(int i=0; i<r.cols; i++) |
---|
| 98 | { |
---|
| 99 | b.at<float>(j,i) = planes[0].at<uchar>(j,i); |
---|
| 100 | g.at<float>(j,i) = planes[1].at<uchar>(j,i); |
---|
| 101 | r.at<float>(j,i) = planes[2].at<uchar>(j,i); |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | I = r+g+b; |
---|
| 105 | //threshold(I, I, 255, 255, THRESH_TRUNC); // Saturation as in Matlab? |
---|
| 106 | I = I/3; |
---|
| 107 | |
---|
| 108 | rgmax = max(r,g); |
---|
| 109 | rgbmax = max(rgmax,b); |
---|
| 110 | |
---|
| 111 | //-- Prevent that the lowest value is zero, because you cannot divide by zero. |
---|
| 112 | for(int j=0; j<r.rows;j++) |
---|
| 113 | for(int i=0; i<r.cols; i++) |
---|
| 114 | { |
---|
| 115 | if (rgbmax.at<float>(j,i) == 0) rgbmax.at<float>(j,i) = 1; |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | |
---|
| 119 | RG = abs(r-g)/rgbmax; |
---|
| 120 | BY = abs(b - min(r,g))/rgbmax; |
---|
| 121 | |
---|
| 122 | rgbmax = rgbmax/255; |
---|
| 123 | //-- If max(r,g,b)<0.1 all components should be zero to stop large fluctuations of the color opponency values at low luminance --// |
---|
| 124 | threshold(rgbmax,mask,.1,1,THRESH_BINARY); |
---|
| 125 | RG = RG.mul(mask); |
---|
| 126 | BY = BY.mul(mask); |
---|
| 127 | I = I.mul(mask); |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | void saliencyMapRudinac::createSaliencyMap(const Mat src, Mat* dst) |
---|
| 133 | { |
---|
| 134 | vector<Mat> mv; |
---|
| 135 | |
---|
| 136 | Mat realImage(src.size(),CV_64F); |
---|
| 137 | Mat imaginaryImage(src.size(),CV_64F); imaginaryImage.setTo(0); |
---|
| 138 | Mat combinedImage(src.size(),CV_64FC2); |
---|
| 139 | Mat image_DFT; |
---|
| 140 | Mat logAmplitude; |
---|
| 141 | Mat angle(src.size(),CV_64F); |
---|
| 142 | Mat Magnitude(src.size(),CV_64F); |
---|
| 143 | Mat logAmplitude_blur; |
---|
| 144 | |
---|
| 145 | for(int j=0; j<src.rows;j++){ |
---|
| 146 | for(int i=0; i<src.cols; i++){ |
---|
| 147 | realImage.at<double>(j,i) = src.at<float>(j,i); |
---|
| 148 | } |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | mv.push_back(realImage); |
---|
| 153 | mv.push_back(imaginaryImage); |
---|
| 154 | merge(mv,combinedImage); |
---|
| 155 | |
---|
| 156 | dft( combinedImage, image_DFT); |
---|
| 157 | split(image_DFT, mv); |
---|
| 158 | |
---|
| 159 | //-- Get magnitude and phase of frequency spectrum --// |
---|
| 160 | cartToPolar(mv.at(0), mv.at(1), Magnitude, angle, false); |
---|
| 161 | log(Magnitude,logAmplitude); |
---|
| 162 | |
---|
| 163 | //-- Blur log amplitude with averaging filter --// |
---|
| 164 | blur(logAmplitude, logAmplitude_blur, Size(3,3), Point(-1,-1), BORDER_DEFAULT); |
---|
| 165 | exp(logAmplitude - logAmplitude_blur,Magnitude); |
---|
| 166 | |
---|
| 167 | polarToCart(Magnitude, angle,mv.at(0), mv.at(1),false); |
---|
| 168 | merge(mv,image_DFT); |
---|
| 169 | dft(image_DFT,combinedImage,CV_DXT_INVERSE); |
---|
| 170 | |
---|
| 171 | split(combinedImage,mv); |
---|
| 172 | cartToPolar(mv.at(0), mv.at(1), Magnitude, angle, false); |
---|
| 173 | Magnitude = Magnitude.mul(Magnitude); |
---|
| 174 | |
---|
| 175 | Mat tempFloat(src.size(),CV_32F); |
---|
| 176 | for(int j=0; j<Magnitude.rows;j++) |
---|
| 177 | for(int i=0; i<Magnitude.cols; i++) |
---|
| 178 | tempFloat.at<float>(j,i) = Magnitude.at<double>(j,i); |
---|
| 179 | |
---|
| 180 | *dst = tempFloat; |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | int main(int argc, char **argv) |
---|
| 185 | { |
---|
| 186 | ros::init(argc, argv, "saliencymap"); |
---|
| 187 | |
---|
| 188 | saliencyMapRudinac salmapRudinac; |
---|
| 189 | |
---|
| 190 | ros::spin(); |
---|
| 191 | |
---|
| 192 | return 0; |
---|
| 193 | } |
---|