//=================================================================================== // Name : saliencyDetectionRudinac.cpp // Author : Joris van de Weem, joris.vdweem@gmail.com // Version : 1.1 // Copyright : Copyright (c) 2011 LGPL // Description : C++ implementation of "Maja Rudinac, Pieter P. Jonker. // "Saliency Detection and Object Localization in Indoor Environments". // ICPR'2010. pp.404~407 //=================================================================================== // v1.1: Ported to Robot Operating System (ROS) #include void saliencyMapRudinac::imageCB(const sensor_msgs::ImageConstPtr& msg_ptr) { cv_bridge::CvImagePtr cv_ptr; sensor_msgs::Image salmap_; geometry_msgs::Point salientpoint_; Mat image_, saliencymap_; Point pt_salient; double maxVal; try { cv_ptr = cv_bridge::toCvCopy(msg_ptr, enc::BGR8); } catch (cv_bridge::Exception& e) { ROS_ERROR("cv_bridge exception: %s", e.what()); } cv_ptr->image.copyTo(image_); saliencymap_.create(image_.size(),CV_8UC1); saliencyMapRudinac::calculateSaliencyMap(&image_, &saliencymap_); //-- Return most salient point --// cv::minMaxLoc(saliencymap_,NULL,&maxVal,NULL,&pt_salient); salientpoint_.x = pt_salient.x; salientpoint_.y = pt_salient.y; // CONVERT FROM CV::MAT TO ROSIMAGE FOR PUBLISHING saliencymap_.convertTo(saliencymap_, CV_8UC1,255); fillImage(salmap_, "mono8",saliencymap_.rows, saliencymap_.cols, saliencymap_.step, const_cast(saliencymap_.data)); saliencymap_pub_.publish(salmap_); point_pub_.publish(salientpoint_); return; } void saliencyMapRudinac::calculateSaliencyMap(const Mat* src, Mat* dst) { Size imageSize(128,128); Mat srcDown(imageSize,CV_64F); Mat magnitudeI(imageSize,CV_64F); Mat magnitudeRG(imageSize,CV_64F); Mat magnitudeBY(imageSize,CV_64F); Mat magnitude(imageSize,CV_64F); resize(*src, srcDown, imageSize, 0, 0, INTER_LINEAR); createChannels(&srcDown); createSaliencyMap(I,&magnitudeI); createSaliencyMap(RG,&magnitudeRG); createSaliencyMap(BY,&magnitudeBY); magnitude= (magnitudeI + magnitudeRG + magnitudeBY); GaussianBlur(magnitude, magnitude, Size(5,5), 0, 0, BORDER_DEFAULT); //-- Scale to domain [0,1] --// double minVal,maxVal; minMaxLoc(magnitude, &minVal, &maxVal); magnitude = magnitude / maxVal; resize(magnitude, *dst, dst->size(), 0, 0, INTER_LINEAR); } void saliencyMapRudinac::createChannels(const Mat* src) { b.create(src->size(),CV_32F); g.create(src->size(),CV_32F); r.create(src->size(),CV_32F); I.create(src->size(),CV_32F); vector planes; split(*src, planes); Mat rgmax(src->size(),CV_32F); Mat rgbmax(src->size(),CV_32F); Mat mask(src->size(),CV_32F); for(int j=0; j(j,i) = planes[0].at(j,i); g.at(j,i) = planes[1].at(j,i); r.at(j,i) = planes[2].at(j,i); } I = r+g+b; //threshold(I, I, 255, 255, THRESH_TRUNC); // Saturation as in Matlab? I = I/3; rgmax = max(r,g); rgbmax = max(rgmax,b); //-- Prevent that the lowest value is zero, because you cannot divide by zero. for(int j=0; j(j,i) == 0) rgbmax.at(j,i) = 1; } RG = abs(r-g)/rgbmax; BY = abs(b - min(r,g))/rgbmax; rgbmax = rgbmax/255; //-- If max(r,g,b)<0.1 all components should be zero to stop large fluctuations of the color opponency values at low luminance --// threshold(rgbmax,mask,.1,1,THRESH_BINARY); RG = RG.mul(mask); BY = BY.mul(mask); I = I.mul(mask); } void saliencyMapRudinac::createSaliencyMap(const Mat src, Mat* dst) { vector mv; Mat realImage(src.size(),CV_64F); Mat imaginaryImage(src.size(),CV_64F); imaginaryImage.setTo(0); Mat combinedImage(src.size(),CV_64FC2); Mat image_DFT; Mat logAmplitude; Mat angle(src.size(),CV_64F); Mat Magnitude(src.size(),CV_64F); Mat logAmplitude_blur; for(int j=0; j(j,i) = src.at(j,i); } } mv.push_back(realImage); mv.push_back(imaginaryImage); merge(mv,combinedImage); dft( combinedImage, image_DFT); split(image_DFT, mv); //-- Get magnitude and phase of frequency spectrum --// cartToPolar(mv.at(0), mv.at(1), Magnitude, angle, false); log(Magnitude,logAmplitude); //-- Blur log amplitude with averaging filter --// blur(logAmplitude, logAmplitude_blur, Size(3,3), Point(-1,-1), BORDER_DEFAULT); exp(logAmplitude - logAmplitude_blur,Magnitude); polarToCart(Magnitude, angle,mv.at(0), mv.at(1),false); merge(mv,image_DFT); dft(image_DFT,combinedImage,CV_DXT_INVERSE); split(combinedImage,mv); cartToPolar(mv.at(0), mv.at(1), Magnitude, angle, false); Magnitude = Magnitude.mul(Magnitude); Mat tempFloat(src.size(),CV_32F); for(int j=0; j(j,i) = Magnitude.at(j,i); *dst = tempFloat; } int main(int argc, char **argv) { ros::init(argc, argv, "saliencymap"); saliencyMapRudinac salmapRudinac; ros::spin(); return 0; }