//=================================================================================== // Name : saliencyDetectionHou.cpp // Author : Oytun Akman, oytunakman@gmail.com // Editor : Joris van de Weem, joris.vdweem@gmail.com (Conversion to ROS) // Version : 1.2 // Copyright : Copyright (c) 2010 LGPL // Description : C++ implementation of "Saliency Detection: A Spectral Residual // Approach" by Xiaodi Hou and Liqing Zhang (CVPR 2007). //=================================================================================== // v1.1: Changed Gaussianblur of logamplitude to averaging blur and gaussian kernel of saliency map to sigma = 8, kernelsize = 5 // for better consistency with the paper. (Joris) // v1.2: Ported to Robot Operating System (ROS) (Joris) #include void saliencyMapHou::imageCB(const sensor_msgs::ImageConstPtr& msg_ptr) { cv_bridge::CvImagePtr cv_ptr; sensor_msgs::Image salmap_; geometry_msgs::Point salientpoint_; Mat image_, saliencymap_; Point pt_salient; double maxVal; try { cv_ptr = cv_bridge::toCvCopy(msg_ptr, enc::BGR8); } catch (cv_bridge::Exception& e) { ROS_ERROR("cv_bridge exception: %s", e.what()); } cv_ptr->image.copyTo(image_); saliencymap_.create(image_.size(),CV_8UC1); saliencyMapHou::calculateSaliencyMap(&image_, &saliencymap_); //-- Return most salient point --// cv::minMaxLoc(saliencymap_,NULL,&maxVal,NULL,&pt_salient); salientpoint_.x = pt_salient.x; salientpoint_.y = pt_salient.y; // CONVERT FROM CV::MAT TO ROSIMAGE FOR PUBLISHING saliencymap_.convertTo(saliencymap_, CV_8UC1,255); fillImage(salmap_, "mono8",saliencymap_.rows, saliencymap_.cols, saliencymap_.step, const_cast(saliencymap_.data)); saliencymap_pub_.publish(salmap_); point_pub_.publish(salientpoint_); return; } void saliencyMapHou::calculateSaliencyMap(const Mat* src, Mat* dst) { Mat grayTemp, grayDown; vector mv; //Size imageSize(160,120); Size imageSize(64,64); Mat realImage(imageSize,CV_64F); Mat imaginaryImage(imageSize,CV_64F); imaginaryImage.setTo(0); Mat combinedImage(imageSize,CV_64FC2); Mat imageDFT; Mat logAmplitude; Mat angle(imageSize,CV_64F); Mat magnitude(imageSize,CV_64F); Mat logAmplitude_blur; cvtColor(*src, grayTemp, CV_BGR2GRAY); resize(grayTemp, grayDown, imageSize, 0, 0, INTER_LINEAR); for(int j=0; j(j,i) = grayDown.at(j,i); mv.push_back(realImage); mv.push_back(imaginaryImage); merge(mv,combinedImage); dft( combinedImage, imageDFT); split(imageDFT, mv); //-- Get magnitude and phase of frequency spectrum --// cartToPolar(mv.at(0), mv.at(1), magnitude, angle, false); log(magnitude,logAmplitude); //-- Blur log amplitude with averaging filter --// blur(logAmplitude, logAmplitude_blur, Size(3,3), Point(-1,-1), BORDER_DEFAULT); exp(logAmplitude - logAmplitude_blur,magnitude); //-- Back to cartesian frequency domain --// polarToCart(magnitude, angle, mv.at(0), mv.at(1), false); merge(mv, imageDFT); dft( imageDFT, combinedImage, CV_DXT_INVERSE); split(combinedImage, mv); cartToPolar(mv.at(0), mv.at(1), magnitude, angle, false); GaussianBlur(magnitude, magnitude, Size(5,5), 8, 0, BORDER_DEFAULT); magnitude = magnitude.mul(magnitude); double minVal,maxVal; minMaxLoc(magnitude, &minVal, &maxVal); magnitude = magnitude / maxVal; Mat tempFloat(imageSize,CV_32F); for(int j=0; j(j,i) = magnitude.at(j,i); resize(tempFloat, *dst, dst->size(), 0, 0, INTER_LINEAR); } int main(int argc, char **argv) { ros::init(argc, argv, "saliencymap"); saliencyMapHou salmapHou; ros::spin(); return 0; }