/*************************************************************************** * Copyright (C) 2006 by Mian Zhou * * M.Zhou@reading.ac.uk * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include #undef DEBUG //#define DEBUG CvGabor::CvGabor() { } CvGabor::~CvGabor() { cvReleaseMat( &Real ); cvReleaseMat( &Imag ); } /*! \fn CvGabor::CvGabor(int iMu, int iNu) Construct a gabor Parameters: iMu The orientation iMu*PI/8, iNu The scale, Returns: None, Create a gabor with a orientation iMu*PI/8, and with a scale iNu. The sigma (Sigma) and the spatial frequence (F) are set to 2*PI and sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(int iMu, int iNu) { //Initilise the parameters Sigma = 2*PI; F = sqrt(2.0); Init(iMu, iNu, Sigma, F); } /*! \fn CvGabor::CvGabor(int iMu, int iNu, double dSigma) Construct a gabor Parameters: iMu The orientation iMu*PI/8, iNu The scale, dSigma The sigma value of Gabor, Returns: None Create a gabor with a orientation iMu*PI/8, a scale iNu, and a sigma value dSigma. The spatial frequence (F) is set to sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(int iMu, int iNu, float dSigma) { F = sqrt(2.0); Init(iMu, iNu, dSigma, F); } /*! \fn CvGabor::CvGabor(int iMu, int iNu, double dSigma, double dF) Construct a gabor Parameters: iMu The orientation iMu*PI/8 iNu The scale dSigma The sigma value of Gabor dF The spatial frequency Returns: None Create a gabor with a orientation iMu*PI/8, a scale iNu, a sigma value dSigma, and a spatial frequence dF. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(int iMu, int iNu, float dSigma, float dF) { Init(iMu, iNu, dSigma, dF); } /*! \fn CvGabor::CvGabor(double dPhi, int iNu) Construct a gabor Parameters: dPhi The orientation in arc iNu The scale Returns: None Create a gabor with a orientation dPhi, and with a scale iNu. The sigma (Sigma) and the spatial frequence (F) are set to 2*PI and sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(float dPhi, int iNu) { Sigma = 2*PI; F = sqrt(2.0); Init(dPhi, iNu, Sigma, F); } /*! \fn CvGabor::CvGabor(double dPhi, int iNu, double dSigma) Construct a gabor Parameters: dPhi The orientation in arc iNu The scale dSigma The sigma value of Gabor Returns: None Create a gabor with a orientation dPhi, a scale iNu, and a sigma value dSigma. The spatial frequence (F) is set to sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(float dPhi, int iNu, float dSigma) { F = sqrt(2.0); Init(dPhi, iNu, dSigma, F); } /*! \fn CvGabor::CvGabor(double dPhi, int iNu, double dSigma, double dF) Construct a gabor Parameters: dPhi The orientation in arc iNu The scale dSigma The sigma value of Gabor dF The spatial frequency Returns: None Create a gabor with a orientation dPhi, a scale iNu, a sigma value dSigma, and a spatial frequence dF. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(float dPhi, int iNu, float dSigma, float dF) { Init(dPhi, iNu, dSigma,dF); } /*! \fn CvGabor::IsInit() Determine the gabor is initilised or not Parameters: None Returns: a boolean value, TRUE is initilised or FALSE is non-initilised. Determine whether the gabor has been initlized - variables F, K, Kmax, Phi, Sigma are filled. */ bool CvGabor::IsInit() { return bInitialised; } /*! \fn CvGabor::mask_width() Give out the width of the mask Parameters: None Returns: The long type show the width. Return the width of mask (should be NxN) by the value of Sigma and iNu. */ long CvGabor::mask_width() { long lWidth; if (IsInit() == FALSE) { perror ("Error: The Object has not been initilised in mask_width()!\n"); return 0; } else { //determine the width of Mask float dModSigma = Sigma/K; float dWidth = cvRound(dModSigma*6 + 1); //test whether dWidth is an odd. if (fmod(dWidth, (float)2.0)==0.0) dWidth++; lWidth = (long)dWidth; return lWidth; } } /*! \fn CvGabor::creat_kernel() Create gabor kernel Parameters: None Returns: None Create 2 gabor kernels - REAL and IMAG, with an orientation and a scale */ void CvGabor::creat_kernel() { if (IsInit() == FALSE) {perror("Error: The Object has not been initilised in creat_kernel()!\n");} else { CvMat *mReal, *mImag; mReal = cvCreateMat( Width, Width, CV_32FC1); mImag = cvCreateMat( Width, Width, CV_32FC1); /**************************** Gabor Function ****************************/ int x, y; float dReal; float dImag; float dTemp1, dTemp2, dTemp3; for (int i = 0; i < Width; i++) { for (int j = 0; j < Width; j++) { x = i-(Width-1)/2; y = j-(Width-1)/2; dTemp1 = (pow(K,2)/pow(Sigma,2))*exp(-(pow((float)x,2)+pow((float)y,2))*pow(K,2)/(2*pow(Sigma,2))); dTemp2 = cos(K*cos(Phi)*x + K*sin(Phi)*y) - exp(-(pow(Sigma,2)/2)); dTemp3 = sin(K*cos(Phi)*x + K*sin(Phi)*y); dReal = dTemp1*dTemp2; dImag = dTemp1*dTemp3; //gan_mat_set_el(pmReal, i, j, dReal); cvmSet( (CvMat*)mReal, i, j, dReal ); //gan_mat_set_el(pmImag, i, j, dImag); cvmSet( (CvMat*)mImag, i, j, dImag ); } } /**************************** Gabor Function ****************************/ bKernel = TRUE; cvCopy(mReal, Real, NULL); cvCopy(mImag, Imag, NULL); #ifdef DEBUG printf("A %d x %d Gabor kernel with %f PI in arc is created.\n", Width, Width, Phi/PI); #endif cvReleaseMat( &mReal ); cvReleaseMat( &mImag ); } } /*! \fn CvGabor::get_image(int Type) Get the speific type of image of Gabor Parameters: Type The Type of gabor kernel, e.g. REAL, IMAG, MAG, PHASE Returns: Pointer to image structure, or NULL on failure Return an Image (gandalf image class) with a specific Type "REAL" "IMAG" "MAG" "PHASE" */ IplImage* CvGabor::get_image(int Type) { if(IsKernelCreate() == FALSE) { perror("Error: the Gabor kernel has not been created in get_image()!\n"); return NULL; } else { IplImage* pImage; IplImage *newimage; newimage = cvCreateImage(cvSize(Width,Width), IPL_DEPTH_8U, 1 ); //printf("Width is %d.\n",(int)Width); //printf("Sigma is %f.\n", Sigma); //printf("F is %f.\n", F); //printf("Phi is %f.\n", Phi); //pImage = gan_image_alloc_gl_d(Width, Width); pImage = cvCreateImage( cvSize(Width,Width), IPL_DEPTH_32F, 1 ); CvMat* kernel = cvCreateMat(Width, Width, CV_32FC1); double ve; switch(Type) { case 1: //Real cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL ); //pImage = cvGetImage( (CvMat*)kernel, pImageGL ); for (int i = 0; i < kernel->rows; i++) { for (int j = 0; j < kernel->cols; j++) { ve = cvGetReal2D((CvMat*)kernel, i, j); cvSetReal2D( (IplImage*)pImage, j, i, ve ); } } break; case 2: //Imag cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL ); //pImage = cvGetImage( (CvMat*)kernel, pImageGL ); for (int i = 0; i < kernel->rows; i++) { for (int j = 0; j < kernel->cols; j++) { ve = cvGetReal2D((CvMat*)kernel, i, j); cvSetReal2D( (IplImage*)pImage, j, i, ve ); } } break; case 3: //Magnitude ///@todo break; case 4: //Phase ///@todo break; } cvNormalize((IplImage*)pImage, (IplImage*)pImage, 0, 255, CV_MINMAX, NULL ); cvConvertScaleAbs( (IplImage*)pImage, (IplImage*)newimage, 1, 0 ); cvReleaseMat(&kernel); cvReleaseImage(&pImage); return newimage; } } /*! \fn CvGabor::IsKernelCreate() Determine the gabor kernel is created or not Parameters: None Returns: a boolean value, TRUE is created or FALSE is non-created. Determine whether a gabor kernel is created. */ bool CvGabor::IsKernelCreate() { return bKernel; } /*! \fn CvGabor::get_mask_width() Reads the width of Mask Parameters: None Returns: Pointer to long type width of mask. */ long CvGabor::get_mask_width() { return Width; } /*! \fn CvGabor::Init(int iMu, int iNu, double dSigma, double dF) Initilize the.gabor Parameters: iMu The orientations which is iMu*PI.8 iNu The scale can be from -5 to infinit dSigma The Sigma value of gabor, Normally set to 2*PI dF The spatial frequence , normally is sqrt(2) Returns: Initilize the.gabor with the orientation iMu, the scale iNu, the sigma dSigma, the frequency dF, it will call the function creat_kernel(); So a gabor is created. */ void CvGabor::Init(int iMu, int iNu, double dSigma, double dF) { //Initilise the parameters bInitialised = FALSE; bKernel = FALSE; Sigma = dSigma; F = dF; Kmax = PI/2; // Absolute value of K K = Kmax / pow(F, (float)iNu); Phi = PI*iMu/8; bInitialised = TRUE; Width = mask_width(); Real = cvCreateMat( Width, Width, CV_32FC1); Imag = cvCreateMat( Width, Width, CV_32FC1); creat_kernel(); } /*! \fn CvGabor::Init(double dPhi, int iNu, double dSigma, double dF) Initilize the.gabor Parameters: dPhi The orientations iNu The scale can be from -5 to infinit dSigma The Sigma value of gabor, Normally set to 2*PI dF The spatial frequence , normally is sqrt(2) Returns: None Initilize the.gabor with the orientation dPhi, the scale iNu, the sigma dSigma, the frequency dF, it will call the function creat_kernel(); So a gabor is created.filename The name of the image file file_format The format of the file, e.g. GAN_PNG_FORMAT image The image structure to be written to the file octrlstr Format-dependent control structure */ void CvGabor::Init(double dPhi, int iNu, double dSigma, double dF) { bInitialised = FALSE; bKernel = FALSE; Sigma = dSigma; F = dF; Kmax = PI/2; // Absolute value of K K = Kmax / pow(F, (float)iNu); Phi = dPhi; bInitialised = TRUE; Width = mask_width(); Real = cvCreateMat( Width, Width, CV_32FC1); Imag = cvCreateMat( Width, Width, CV_32FC1); creat_kernel(); } /*! \fn CvGabor::get_matrix(int Type) Get a matrix by the type of kernel Parameters: Type The type of kernel, e.g. REAL, IMAG, MAG, PHASE Returns: Pointer to matrix structure, or NULL on failure. Return the gabor kernel. */ CvMat* CvGabor::get_matrix(int Type) { if (!IsKernelCreate()) {perror("Error: the gabor kernel has not been created!\n"); return NULL;} switch (Type) { case CV_GABOR_REAL: return Real; break; case CV_GABOR_IMAG: return Imag; break; case CV_GABOR_MAG: return NULL; break; case CV_GABOR_PHASE: return NULL; break; } return NULL; } /*! \fn CvGabor::output_file(const char *filename, Gan_ImageFileFormat file_format, int Type) Writes a gabor kernel as an image file. Parameters: filename The name of the image file file_format The format of the file, e.g. GAN_PNG_FORMAT Type The Type of gabor kernel, e.g. REAL, IMAG, MAG, PHASE Returns: None Writes an image from the provided image structure into the given file and the type of gabor kernel. */ void CvGabor::output_file(const char *filename, int Type) { IplImage *pImage; pImage = get_image(Type); if(pImage != NULL) { if( cvSaveImage(filename, pImage )) printf("%s has been written successfully!\n", filename); else printf("Error: writting %s has failed!\n", filename); } else perror("Error: the image is empty in output_file()!\n"); cvReleaseImage(&pImage); } /*! \fn CvGabor::show(int Type) */ void CvGabor::show(int Type) { if(!IsInit()) { perror("Error: the gabor kernel has not been created!\n"); } else { IplImage *pImage; pImage = get_image(Type); cvNamedWindow("Testing",1); cvShowImage("Testing",pImage); cvWaitKey(0); cvDestroyWindow("Testing"); cvReleaseImage(&pImage); } } /*! \fn CvGabor::conv_img(IplImage *src, IplImage *dst, int Type) */ void CvGabor::conv_img(IplImage *src, IplImage *dst, int Type) { double ve, re,im; CvMat *mat = cvCreateMat(src->width, src->height, CV_32FC1); for (int i = 0; i < src->width; i++) { for (int j = 0; j < src->height; j++) { ve = cvGetReal2D((IplImage*)src, j, i); cvSetReal2D( (CvMat*)mat, i, j, ve ); } } CvMat *rmat = cvCreateMat(src->width, src->height, CV_32FC1); CvMat *imat = cvCreateMat(src->width, src->height, CV_32FC1); CvMat *kernel = cvCreateMat( Width, Width, CV_32FC1 ); switch (Type) { case CV_GABOR_REAL: cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); break; case CV_GABOR_IMAG: cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); break; case CV_GABOR_MAG: /* Real Response */ cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)rmat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); /* Imag Response */ cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)imat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); /* Magnitude response is the square root of the sum of the square of real response and imaginary response */ for (int i = 0; i < mat->rows; i++) { for (int j = 0; j < mat->cols; j++) { re = cvGetReal2D((CvMat*)rmat, i, j); im = cvGetReal2D((CvMat*)imat, i, j); ve = sqrt(re*re + im*im); cvSetReal2D( (CvMat*)mat, i, j, ve ); } } break; case CV_GABOR_PHASE: break; } if (dst->depth == IPL_DEPTH_8U) { cvNormalize((CvMat*)mat, (CvMat*)mat, 0, 255, CV_MINMAX); for (int i = 0; i < mat->rows; i++) { for (int j = 0; j < mat->cols; j++) { ve = cvGetReal2D((CvMat*)mat, i, j); ve = cvRound(ve); cvSetReal2D( (IplImage*)dst, j, i, ve ); } } } if (dst->depth == IPL_DEPTH_32F) { for (int i = 0; i < mat->rows; i++) { for (int j = 0; j < mat->cols; j++) { ve = cvGetReal2D((CvMat*)mat, i, j); cvSetReal2D( (IplImage*)dst, j, i, ve ); } } } cvReleaseMat(&kernel); cvReleaseMat(&imat); cvReleaseMat(&rmat); cvReleaseMat(&mat); }